Asymptotics of the Gauss Hypergeometric Function with Large Parameters, I

نویسنده

  • R. B. PARIS
چکیده

We obtain asymptotic expansions for the Gauss hypergeometric function F(a+ ε1λ ,b+ ε2λ ;c+ ε3λ ;z) as |λ | →∞ when the ε j are finite by an application of the method of steepest descents, thereby extending previous results corresponding to ε j = 0, ±1 . By means of connection formulas satisfied by F it is possible to arrange the above hypergeometric function into three basic groups. In Part I we consider the cases (i) ε1 > 0 , ε2 = 0 , ε3 = 1 and (ii) ε1 > 0 , ε2 = −1 , ε3 = 0 ; the third case ε1, ε2 > 0 , ε3 = 1 is deferred to Part II. The resulting expansions are of Poincaré type and hold in restricted domains of the complex z -plane. Numerical results illustrating the accuracy of the different expansions are given. Mathematics subject classification (2010): Primary 33C05, 34E05, 41A60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS

The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...

متن کامل

A note on the summation of an infinite series involving a hypergeometric function

The mathematical properties of the generalized hypergeometric function are now well established, due largely to the efforts of Bailey, Watson, Slater, and many others. There are available a number of books on the subject ['], [6] which contain extensive bibliographies together with an outline of the history of the investigations. A large portion of the published work concerning these functions ...

متن کامل

Selberg integral involving the S generalized Gauss's hypergeometric function, a class of polynomials the multivariable I-function and multivariable Aleph-functions

ABSTRACT In the present paper we evaluate the Selberg integral involving the S generalized Gauus's hypergeometric function, a multivariable Aleph-function, the multivariable I-function defined by Nambisan et al [3] and general class of polynomials of several variables. The importance of the result established in this paper lies in the fact they involve the I-function of several variables which ...

متن کامل

Large Parameter Cases of the Gauss Hypergeometric Function

We consider the asymptotic behaviour of the Gauss hypergeometric function when several of the parameters a, b, c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Krawtchouk, Meixner, etc.), which results are already available and which cases need more attention. We also consider a few examples of 3F2 functions of unit argument, to explain which dif...

متن کامل

A generalization of Clausen’s identity

Abstract The paper aims to generalize Clausen’s identity to the square of any Gauss hypergeometric function. Accordingly, solutions of the related 3rd order linear differential equation are found in terms of certain bivariate series that can reduce to 3F2 series similar to those in Clausen’s identity. The general contiguous variation of Clausen’s identity is found. The related Chaundy’s identit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013